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Abstract

Fully Homomorphic Encryption (FHE) enables secure
computations on encrypted data for privacy-preserving ma-
chine learning. While recent FHE schemes support efficient
SIMD-like operations, they require frequent data realignment
through rotation, necessitating substantial memory for pre-
computed rotation keys. We propose an application-aware,
memory-efficient rotation keyset generation method that re-
duces memory consumption by 4.05-25.02x compared to con-
ventional approaches, while maintaining similar latency. Our
method achieves 2.02-2.32x faster rotations and 1.22-1.39x
overall performance improvement compared to the power-of-
two method.

1 Introduction

Fully Homomorphic Encryption (FHE) enables privacy-
preserving computation on encrypted data, crucial for sen-
sitive domains like healthcare and finance. CKKS [6] has
become prominent in privacy-preserving machine learning
(PPML) due to its support for batching multiple data points
in a single ciphertext, allowing SIMD-like computations. A
critical operation in CKKS-based PPML is rotation, which
shifts encrypted data and the corresponding secret key. This
operation requires specific keys for each index, presenting
a significant challenge in memory consumption, especially
for complex models like CNNs. For instance, LeNet-5 [8]
requires rotation keys for 288 distinct indices.

Two main approaches have been proposed to address this
challenge: the All-required method, which generates keys for
all necessary rotation indices, and the Power-of-two method,
which generates keys only for power-of-two indices. FHE
libraries [9,22] have adopted the Power-of-two optimization
strategy, reducing memory usage but introducing computa-
tional overhead through recursive rotation calls. For example,
a rotation of 7 positions requires three separate rotations (4 +
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Table 1: CKKS parameters used in this paper

Parameter Description In this paper
N Polynomial degree 216
Qo Base modulus 238
Omin Lowest Q for computation 2184
Ocomp Highest Q for computation 2798
Omax Maximum Q (during bootstrapping) 21552
PO Entire modulus 21612

2 + 1). The All-required approach, implemented in FHE-MP-
CNN [17], generates keys for all required indices, optimizing
performance but increasing memory consumption to approxi-
mately 307 GB, nearly nine times more than the Power-of-two
approach.

We propose a memory-efficient rotation keyset generation
approach for CNNs using FHE, balancing memory efficiency
and computational performance. Our method is based on the
observation that certain rotation indices are used infrequently
or only at lower computation levels. We selectively avoid gen-
erating rotation keys for higher levels where certain rotations
are less needed, significantly reducing memory consumption
without substantially compromising performance. Our evalua-
tion compares our method against the All-required and Power-
of-two approaches, assessing their impact on CNN inferences
over CKKS with different activation function evaluations.
Results show our method achieves 4.05-25.02% less mem-
ory consumption than All-required, and 1.39-1.58 x speedup
compared to Power-of-two, with a modest 1.45-6.71x in-
crease in memory footprint. These findings demonstrate our
method’s effectiveness in balancing memory efficiency and
computational performance for FHE-based CNNs in resource-
conscious environments.

2 Background

This section describes the preliminaries of our work. Table |
lists CKKS parameters used in our work. It satisfies 128-bit
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Figure 1: Example of a rotation by index 2

security, and the maximum computation level is 16 in this
parameter setting.

2.1 CKKS

CKKS [4,6] is a homomorphic encryption scheme that offers
arithmetic operation over encrypted data. It gets a vector of
complex numbers and encodes it into a plaintext, which is
in a polynomial ring. A polynomial ring of degree N with
modulus Q is defined as R g v = Zo[X]/ (XY +1) for a Power-
of-two integer N > 2. The encryption of an encoded plain-
text m € R g using secret key s € R g is computed as
ctx = (cg,c1) =(m+e—a-s, a) € KQQ’N, where ctx denotes
ciphertext, a and e are randomly sampled from a uniform
distribution and an error distribution with standard deviation
(e.g. gaussian distribution), respectively. The decryption of a
ciphertext ctx is defined as (ctx,s) =cop+cj-s=m+e.
Ciphertext Level. For the efficient computation, the cipher-
text modulus Q is divided into a number of smaller mod-
uli, and the ciphertext is also divided into smaller polyno-
mials based on the Chinese remainder theorem (CRT). The
ciphertext modulus is denoted as Q = Hfzoq,-, where g is a
base modulus, and the others are prime moduli, which form
a residue number system (RNS) [4]. In this representation,
the number of non-base primes (i.e. /) denotes the ciphertext
level, refers the available number of multiplication. In general,
we need to switch the moduli chain down after multiplication
and this process is to remove the last modulus of Q, dividing
Q by a scaling factor A (i.e. Q' = Q/A), then the level of
ciphertext goes down / to / — 1. This implies that the number
of polynomials in a ciphertext is also reduced.

Basic Operations. CKKS supports three basic operations,
Addition, Multiplication, and Rotation. The two arithmetics
guarantee that given two ciphertexts ctx; = Enc(v;) and
ctxp = Enc(v2), the decryption of ctx; ® ctx, is same as the
v1 *v2, where ® is a homomorphically same operator as an
operator * (i.e. +/X) between two vectors. Rotation offers
a cyclic shift of a ciphertext for a given index idx, which ro-
tates the order of a vector v by idx slots. Figure | depicts an
example of rotating a ciphertext with 5 slots by index 2.
Bootstrapping. When the modulus reaches Q,,;,, a cipher-
text should recover the exhausted levels for more multiplica-
tions. Bootstrapping enables this process by starting at O,
raising the modulus to Q4 and performing sub-operations
such as Rotations and Multiplications. The modulus becomes
Ocomp With successive Multiplications during bootstrapping.
As it consists of lots of sub-operations, it is the most time-
consuming operation, taking 79.46x longer than the multipli-
cation between ciphertexts at level 16.

Table 2: Relative latency of rotations for N = 26
Hamming weight 1 2 3 4 5 6 7
Relative latency 1.0 26 38 53 58 7.6 83

2.2 Rotation and Rotation Key

As the Rotation shifts both encrypted vector v and correspond-
ing secret key s by given idx, the ciphertext needs to switch
the secret key for correct decryption using rotation keys. For
a given secret key s, we denote sy as a rotated secret key
and sp as s. We assume our parameter uses a single special
prime p (in Table 1). We first sample al) from a uniform
distribution for 0 < i < (1+1) and €’ from error distribution.
Then a rotation key rk is defined as rk = (rk(©@ ... rk(1+1),
where rk® = (—a(® .5, +¢/,a®) (mod p) and rk(!*/) =
(—a9) sy + [ply; -s1+€,al 7)) (mod g;) for 0 < j <.

Rotation consists of three steps, modUp, multKey,
modDown and generated rk is used at multKey step. Note
that the vector v is encoded and encrypted, Rotation does not
indicate the simple shift of coefficients of a polynomial. For
a given ciphertext ctx that already rotated composed polyno-
mials at level /, modUp raises the modulus from Q = Hﬁzoq,-
to PQ=p- H,LM;’- We write the modulus raised ctx as
ctx’ and it is multiplied by rk. In details, ctx’ is written as
(et et ) where ctx'?) = (cg(i),c/l(i)) for0 <i<
(1 +1). Then X ? = et @ . k© (mod p) and et =
ctx!@ . k@ (mod ¢;) for 0 <i <. After the modDown, the
modulus becomes Q, and the secret key is also turned back to
s. For cryptographic details, refer to the literature [11].

3 Motivation

Existing Approaches and Their Limitations. The gener-
ation of rotation keys for all possible indices (N/2 — 1) is
impractical due to excessive memory requirements, exceed-
ing 30 TB in our parameter settings (Table 1). To address
this, FHE libraries [9,22] have implemented the power-of-
two approach, reducing the number of keys to 2log N — 1 and
decreasing memory consumption to 33.28 GB. However, this
method introduces computational overhead through recursive
rotation calls. Table 2 shows the relative latency increase
for rotations based on their Hamming weight. For example,
rotating by index 3 (2+1) is 2.6 X slower than a single rotation.
Impact on FHE-based CNNs. In FHE-based Convolu-
tional Neural Networks (CNNs), which require various ro-
tation indices, this performance degradation is particularly
pronounced. Many rotations in CNNs necessitate multiple
recursive calls, leading to significant slowdowns. Our evalua-
tions show performance degradation of up to 1.38 x in CNN
inference tasks using the power-of-two method. These find-
ings highlight the need for a balanced approach that optimizes
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Figure 2: Overview of our approach

both memory efficiency and computational performance in
FHE-based neural networks, which is the focus of our pro-
posed method.

4 Optimizing Rotation Keyset Generation

4.1 Key Observation and Approach

While recent work like FHE-MP-CNN [17] has improved per-
formance by generating all required indices, this approach still
incurs significant memory overhead. Our method builds upon
this foundation, introducing a crucial optimization based on a
key observation: ciphertext levels for rotations are often set
lower than the maximum level (e.g. only required at level=3),
despite rotation keys being generated up to the maximum
level by defined parameter set [1,3,9,22].

This insight allows us to propose a novel approach that
considers both rotation indices and ciphertext levels when
generating keys. By analyzing the neural network computa-
tion to identify the specific ciphertext level status at rotation
calls, we can generate only the keys that are actually needed,
significantly reducing memory requirements without compro-
mising performance.

4.2 Optimized Rotation Keyset Generation
Process

Our approach, illustrated in Figure 2, focuses on minimizing
the rotation keyset size through a systematic analysis of FHE
CNN. We assume the availability of pre-generated FHE CNN
computation code, which is standard in this field [7,20].
Layer-Specific Rotation Analysis. We begin by identifying
layers that require rotations, focusing on non-SIMD opera-
tions such as convolution, pooling, and fully-connected layers.
This targeted analysis allows us to exclude layers like batch
normalization and activation, which operate in a SIMD man-
ner and do not require rotations.

Comprehensive Rotation Table Generation. The core of
our optimization lies in creating a detailed rotation table. This
table maps rotation indices against ciphertext levels, provid-
ing a comprehensive view of rotation requirements across the

network. By deterministically identifying the specific cipher-
text levels and indices at which rotations are called in each
layer, we construct a minimal set of required rotation keys.
This process reveals patterns and opportunities for optimiza-
tion that are not apparent when considering indices alone.
For instance, we may find that certain high-level rotations are
never used in practice, or that some indices are only required
at lower ciphertext levels.

Efficient Rotation Key Generation. Based on the rotation
table, we implement a level-aware key generation strategy.
This approach ensures that we only generate keys for the lev-
els at which they are actually needed. Importantly, we account
for the RNS representation by generating keys for all levels
up to and including the required level for each index. For
example, if a layer requires a rotation at index idx at level &,
we generate rotation keys for this index from level O to k. This
strategy ensures compatibility with the RNS structure while
avoiding the generation of unnecessary high-level keys. This
level-aware approach represents a significant advancement
over previous methods. By precisely tailoring the key genera-
tion to the actual needs of the network, we achieve substantial
memory savings without sacrificing the ability to perform any
required rotation. Moreover, this method provides valuable
insights into the rotation patterns within FHE CNNss, poten-
tially informing future optimizations in network design and
implementation.

5 Evaluation

Environment and Benchmarks. We used a machine with
two Intel Xeon Gold 6326 CPUs (2.9 GHz) and 1 TB main
memory. All experiments were conducted using the HEaaN
library [9], with a multi-threaded preset compile option (64
threads). We evaluate ResNet-20 [12] and SqueezeNet [14]
using the CIFAR-10 dataset. To show the effectiveness of
our approach, we compare ours to two different FHE CNNss,
one using low-depth ReLU (AESPA) and the other using high-
depth ReLU (MPCNN). AESPA is re-trained using the method
presented in their literature [21]. MPCNN does not re-train
the model but simply replaces the ReL.Us with composite
approximated polynomials [18] consuming multiple multi-
plicative depths. Note that we evaluate only the rotation keys
required during the CNN computation, thus we exclude the
rotation keys called during bootstrapping.

Compared Baselines. We compare our method against the
two baselines that have been previously introduced, Power-of-
two and All-required. Power-of-two is a method that generates
a default rotation keyset of power-of-two indices back-and-
forth, while All-required generates all the keys for all rotations
called during inference. Note that consequently, the keyset
generated by All-required depends on the benchmark, while
Power-of-two always generates the same keyset for all the
benchmarks.



Table 3: Comparison of Memory Consumption

Memory (GB) AESPA MPCNN
ResNet-20  SqueezeNet  ResNet-20  SqueezeNet
Power-of-Two 33.29 33.29 33.29 33.29
All-Required 307.09 241.39 307.09 241.39
Ours 63.07 49.96 20.79 9.65

Table 4: Comparison of Latency

ResNet-20 SqueezeNet
Latency (s)
Power-of-Two Ours Power-of-Two Ours
Rotation 55.04 27.15 48.73 20.94
Bootstrapping 23.52 23.97 55.86 56.13
Others 20.19 19.94 49.54 48.97
Total 98.75 71.06 154.13 126.04

5.1 Memory Consumption

All-required. Our approach generates all required indices
but selective levels. Thus, ours reduced the memory usage by
4.05-4.86x for AESPA applied models and 14.77-25.02 x for
MPCNN models compared to All-required. As we mentioned
earlier, MPCNN runs all rotation-containing layers at a low
level, requiring less memory for keys compared to AESPA.
Power-of-two. Compared to Power-of-two, our approach
for AESPA requires more memory. AESPA consists of Ro-
tations at the various levels because it consumes only one
multiplicative depth to run ReLU, the rotation contained lay-
ers are at various levels. Therefore, it requires more rotation
keys for higher levels, 1.83—1.45x more memory. We will
discuss the related effect of latency later. Meanwhile, ours
generates fewer rotation keys for MPCNN, reduced by 1.65—
3.56x. This is because it requires all indices, but we only
generate lower-level keys.

5.2 End-to-End Inference Latency

Table 4 shows the end-to-end inference latencies using our
approach and Power-of-Two. The latency of our approach
is nearly identical to All-required because neither requires
recursive Rotation calls. As we generated specific indices
for rotations during bootstrapping, the bootstrapping latency
of both Power-of-two and ours are almost same. The main
difference is in Rotation, we reduced the latency of Rotation
2.02x, 2.32x, respectively. This indicates that many rotations
in both models are not power-of-two indices and thus incur
recursive Rotation calls. By generating all indices used for
a model, ours improves Rotation latency, which in turn en-
hances the performance of FHE CNN model inference, 1.39 x
for ResNet-20 and 1.22x for SqueezeNet.

Memory Efficiency and Latency Trade-offs. Our approach
ensures that the total size of rotation keys is smaller than

(or equal to) that of All-required. Because prior approaches
generate keys up to the maximum level that defined at param-
eter setting, we selectively generate keys by levels as much
as the model needed. Compared to Power-of-two, ours does
not guarantee lower memory usage, but offers a comparable
trade-off in inference latency.

6 Related Works and Discussion

Key Extension. Several works [13, 16] adopted methods that
extend the key size in order to enhance the performance. They
decompose certain keys (including rotation keys) that induce
more memory overhead but reduce the NTT/INTT complexity.
Our work is orthogonal to theirs in that their works increase
the size of each rotation key, while our work aims to reduce
the number of selections. In fact, our work can be applied
on top of their works to reduce their memory overhead while
benefiting from their performance enhancements.
Application to diverse neural networks. Just as AESPA and
MPCNN, researchers devised numerous techniques for com-
puting neural networks using FHE. For example, AutoFHE [2]
dynamically allocates different polynomial approximations
to different ReLUs in a CNN selected by running a neural
architecture search that predicts its impact on accuracy and
performance. Our work can also enhance those other neural
network inferences over FHE in that there are no limitations
in analyzing the used rotation indices and generate only those
that are required considering the levels. We envision that a
future work extending ours by generalizing the rotation key
index selection process could provide a general solution to
this matter.

7 Conclusion

In this work, we introduced a memory-efficient rotation keyset
generation approach for FHE CNNs. By selectively generat-
ing rotation keys only for specific indices and levels required
by the model, our approach achieves up to 25.02x reduc-
tion in memory consumption without sacrificing performance.
Experimental results show that ours maintains comparable
inference latency to baseline methods, with up to 2.32x faster
rotations than the Power-of-two method. We envision that
our approach enables the practical deployment of FHE CNNs
in memory-constrained environments, such as edge devices,
making PPML more feasible in real-world applications.
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Figure 3: Example of MPConv [17]

A Rotations in Encrypted CNN

Several works [5, 10, 15, 19] proposed efficient convolution
methods to compute convolutional neural networks (CNN).
Multiplexed parallel convolution (MPConv) [17] aims to use
a minimal number of ciphertexts considering bootstrapping.
It utilizes SISO convolution [15] and packs as many pixels
as possible in a single ciphertext between layers, which is
achieved by Rotations. Figure 3 shows an example of MP-
Conv with 4 input channels and 8 output channels by strides
2. For slot utilization, MPConv fills useless slots with valid
values by masking and Rotations even if convolution output
is obtained after the second step. This is necessary because
a CNN is composed of successive layers (i.e. The output of
layer k is going to be the input of layer k + 1), pixels should
be re-arranged to apply same convolution method.
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